
PENGUJIAN PERANGKAT LUNAK

(DPH2C2)

PERTEMUAN 5 & 6

MATERI : BASIS PATH TESTING

Hanya digunakan di lingkungan Program Studi D3 Manajemen Informatika – Fakultas Ilmu Terapan – Universitas Telkom

PROGRAM STUDI D3 MANAJEMEN INFORMATIKA – UNIVERSITAS TELKOM

SEMESTER GENAP TAHUN AKADEMIK 2016-2017



Basis Path Testing



Kajian 2



Techniques for Testing - Dynamic

 Basis Path Testing

 a white-box testing technique, proposed by Tom McCabe, 1976

 to derive a logical complexity measure of a procedural design, and use this measure as a guide 

for defining a basis set of execution paths

 test cases derived to exercise every statement and branch in the program at least once during 

testing (statement/branch coverage)

 if every condition in a compound condition is considered, condition coverage can be achieved

 Steps:

 Draw a (control) flow graph, using the flowchart or the code

 Calculate the cyclomatic complexity, using the flow graph

 Determine the basis set of linearly independent paths

 Design test cases to exercise each path in the basis set



Basis Path Testing

 Flow Graph

 used to depict program control structure

 can be drawn from a flowchart (a procedural design representation)

 can be drawn from a piece of source code

 Flow Graph Notation

 a flow graph composed of edges and nodes

 an edge starts from a node and ends to another node

Sequence     if-then-else         While              Repeat-until                Case

...



Basis Path Testing

 Cyclomatic Complexity

 a software metric that provides a quantitative measure of the logical complexity of a program

 Basis set: is a maximal linearly independent set of paths through a graph

 An independent path: is any path through a program that introduces at least one new set of 

processing statements or a new condition (I.e. at least one new edge in a flow graph)

 Cyclomatic complexity defines the number of independent path in the basis set of a program

 gives an upper bound for the number of tests that must be conducted to achieve 

statement/branch/condition coverage

 How to calculate cyclomatic complexity:

cc = e - n + 2p

 e - number of edges; n - number of nodes; p - number of components;

 if all nodes in a graph are connected, then p = 1, thus

cc = e - n + 2



Basis Path Testing: Example 2

1. Draw a flow graph

 see slide 6-24: source code, flow graph

2. Calculate cyclomatic complexity

 e = 12; n = 10; p = 1

 cc = 12 - 10 + 2 x 1 =4

3. Determine a basis set of independent paths

 expect to specify 4 independent paths

 p1: 1-2-3-7-8-9-11

 p2: 1-2-3-4-5-7-8-9-11

 p3: 1-2-3-4-5-7-8-10-11

 p4: 1-2-3-4-6-3-7-8-10-11 (1 or more times)

 HOWEVER: by reading source code, we found 

 3-7 => 10; 5 => 9

 p1 and p3 must be modified

1, 2

3

6
4

5

7

8

9 10

11



Basis Path Testing: Example 2

 3. Determine a basis set of independent paths 

 if p3 modified, it would be the same as p2. Thus p3 should be deleted. 

 But the new paths introduced by p3 (8-10-11) must be covered by other paths! We found p4 

covers them.

 Modify p1, delete p3, we can have three independent paths

 p1: 1-2-3-7-8-10-11

 p2: 1-2-3-4-5-7-8-9-11

 p3: 1-2-3-4-6-3-7-8-10-11

 if you study the program carefully, you will find the following is better

 p1: 1-2-3-7-8-10-11 (insert x when a[] is empty)

 p2: 1-2-3-4-5-7-8-9-11(insert x when a[1]=x)

 p3: 1-2-3-4-6-3-4-5-7-8-9-11 (insert x when a[i]=x,i>1, n>=i)

 p4: 1-2-3-4-6-3-7-8-10-11 (insert x when a[] is not empty and x is not in a[]; p4 does not introduce any new 
edge but it exercises a new combination of the program logic!)



Basis Path Testing: Example 2

 4. Design test cases

 Path 1 test case: 1-2-3-7-8-10-11 (insert x when a[] is empty)

 input data: n=0; x=8; a[1]=0; b[1]=0;

 expected results: a[1]=8; b[1]=1; n=1;

 Path 2 test case: 1-2-3-4-5-7-8-9-11(insert x when a[1]=x)

 input data: n=3; x=9; a[1]=9; a[2]=2; a[3]=3;b[1]=2;b[2]=5;b[3]=8;

 expected results: b[1]=3

 Path 3 test case: 1-2-3-4-6-3-4-5-7-8-9-11 (insert x when a[i]=x,i>1, n>=i)

 input data: n=3;x=3;a[1]=9;a[2]=2;a[3]=3;b[1]=3;b[2]=2;b[3]=8;

 expected results: b[3]=9

 Path 4 test case: 1-2-3-4-6-3-7-8-10-11 (insert x when a[] is not empty and x is not in a[])

 input data: n=3;x=6;a[1]=9;a[2]=2;a[3]=3;b[1]=3;b[2]=2;b[3]=8;

 expected results: a[4]=6; b[4]=1; n=4;



Transformasi dalam

Flow Graph pada

Basis Path Testing

i = 1; 

total.input = total.valid = 0;

sum = 0;

DO WHILE value[i] <> -999 AND total.input < 100

increment total.input by 1;

IF value[i] >= minimum and value[i] <= maximum

THEN increment total.valid by 1;

sum = sum + value[i]

ELSE skip

ENDIF

increment I by 1;

ENDDO

IF total.valid > 0

THEN average = sum / total.valid;

ELSE average = -999;

ENDIF

END average



Transformasi dalam

Flow Graph pada

Basis Path Testing

Petakan setiap baris dalam algoritma/badan program dalam

sebuah node. INGAT !!! Satu node dapat terdiri atas satu

instruksi/baris algoritma, dapat juga terdiri atas beberapa instruksi

algoritma yang tidak memiliki nilai BOOLEAN.

i = 1; (1)

total.input = total.valid = 0; (1)

sum = 0; (1)

DO WHILE value[i] <> -999 AND total.input < 100 (2)

increment total.input by 1; (3)

IF value[i] >= minimum and value[i] <= maximum (4)

THEN increment total.valid by 1; (5)

sum = sum + value[i] (5)

ELSE skip (6)

ENDIF (7)

increment I by 1; (7)

ENDDO (8)

IF total.valid > 0 (9)

THEN average = sum / total.valid; (10)

ELSE average = -999; (11)
ENDIF (12)

END average (12)



Transformasi dalam

Flow Graph pada

Basis Path Testing



Latihan

Buatlah transformasi algoritma

disamping dalam bentuk

flowgraph dengan dihitung

berapa jumlah Node (N), 

Predicate Node (P), Region (R 

), Edge (Edge) dan V(G)

Public void tes_cyclomatic(int a, int b, int c){

int total,a;

While a <= 10 {

Count++;

If (b < 10) {

cut = b/100 * c;

cut = cut * -1;

}

Else if (b > 10) {

cut = b/100 * c;       

}

Else {

cut = 0;

}

a++;

total = 1000 + cut;

}

}


